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Abstract materials variables (parameters) is typically determined by
varying a parameter, printing images, and then asking

This paper describes an experiment to determine theustomers to judge the quality of the printed image. This
absolute graininess (GS) threshold of uniform (solid) arealearly works, but, it is inefficient because a new data
images. The psychometric experiment used a variation afollection effort is required every time a parameter is
the Method of Constant Stimuli where the observers sort thehanged. The IQC breaks the relationship between Tech-
stimuli (samples) depending on their ability to “see” ornology Variables and Customer Perceptions down into a
detect graininess. Since graininess is composed of at leasdries of definable and measurable steps. The four elements
two Physical Image Parameters, (PIP), the lightness opticaf the IQC approach are depicted as in Figure 1.
density curve for the Human Visual System (HVS) and the
Wiener Spectrum, a Visual Algorithm is used to specify theCustomer Quality Preferences
stimuli GS. This is a variation on the classical method of = Customer image quality preference is the overall image
absolute threshold where the stimuli are specified in termguality rating as judged by customers. In our experiments,
of a single PIP. Several psychometric models are discussélis is a 0 to 100 interval rating scale of overall image
and methods to fit the experimental data are describeduality using two reference points, usually at 20 and 80.
Finally, a linear probability model is used to determine the
absolute GS threshold in terms of a Density-Wiener Spectr@ustomer Perceptions

space. The major customer perceptual components of image
. ) ) quality are such dimensions as darkness, sharpness, and
Introduction - the Image Quality Circle graininess. These are called the "nesses".

Image quality and its components is a complex problem thahysical Image Parameters

are still active research topics. To simplify the under-  Physical image parameters are the quantitative func-

standing of image quality we use a step-by-step approadtons and parameters we normally ascribe to image quality,

called the "Image Quality Circlé"(IQC), which is shown such as modulation transfer, Wiener spectra, or amplitude

in Fig. 1. spectra. From a historical perspective, these are considered
to be objective measures of image quality.

Customer
Quality
e Technology Variables
e Technology variables are the elements or parameters
Models that the imaging system designer or imaging system
The manufacturer manipulates to change the image quality. Such
poustomer image | Tochnology variables include dots per inch (resolution), toner size, and
The "nesses” Quality Variables paper parameters, to name just a few.
Circle The four elements of the IQC are linked to one another

via models, or algorithms, which are depicted as ovals in
Figure 1.

Physical
Image
Paramatars

Image Quality Models
Image quality models are empirical (statistical) models
Figure 1: The Image Quality Circle that relate the customer perceptions—darkness, sharpness,
The goal of an imaging system designer is to relate th raininess and ragge_dness, for. example—to Custqmer
uality Preferences or image quality. The model describes

technology variables of the imaging system to the qualityy " oihematical terms the tradeoff that the customer makes
preferences of the customer. Figure 1 shows this fund%\?hen judging image quality

mental objective via the large arrow. The link between
customer quality preference and the imaging system and
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Visual Algorithms weighting of the density fluctuations of the image. The
Visually-based algorithms have a long history in photo-correct graininess algoritHris given by:

graphic image quality. The algorithm is the recipe that is "

used to compute a value of a percept; sharpness for B dL**|? 2 u@

example, from something like the measurement of the W?IVTF %

gradient of a printed edge. In the context of the IQC, GS=logO D0 O

"visually based" means that the spatial properties and the 0 u O

nonlinear stimulus-response aspects of the human visual B’V%@U B

system are explicitly incorporated into the algorithm. )

System Models where L** is the lightness of complex fields for a light

System models are analytical models that predict thormal) surrountiand is given by =
physical image parameters from the technology variables. 5/—20_1> _
One example might be the model for the amplitude 115010 +1-18,
spectrum of a line boundary (the physical image parametand the magnitude of the derivative is evaluated at the
from which raggedness is calculated) for a dot-matrixaverage density, VTF(u/m) is the spatial frequency
printer, developed by knowing dot diameter and dot spacingeighting = 5.05{exp(-0.84u) - exp(-1.45u)} for u >
parameters 1.0cy/mm and = 1.0, 0 < u 1.0cy/mm (this is for a 35cm
In this paper we describe the determination of theviewing distance), WS(u/m) is the Wiener specimaunits
absolute visual threshold of graininess, a Customer Percepf Densityunt, andm is a magnification or scaling factor.
tions or “ness” using a previously published graininess
Visual Algorithni. Previous graininess threshold stutfiés Experimental Procedure
have explored only the magnitude of the density or
reflectance fluctuations, granularity-a PIP, and have ignore8amples (Stimuli)
the affect of average density. Several different psychometric The graininess samples were nominally constant gray
functions were used to fit the data and to estimate the visubldvels from black and white electrophotographic printers
threshold. Using the Physical Image Parameters (PIPs) thahd copiers, plus gray paint “chips” and Munsell gray
comprise the graininess algorithm it was possible tgatches. Incorporating the paint chips and the Munsell gray
formulate the threshold psychometric functions in terms of @atches assured that there would be samples (stimuli) that
linear probability model. This has not been the usuahad essentially zero, or at least imperceptible, graininess.
psychophysical approach to threshold determination. Morgighteen one inch by one inch patches were mounted on
commonly the stimulus is specified in terms of somethree inch by five inch index cards for presentation to the
physical measure; the luminance of a light source or thebserver.
acoustic pressure of soundN illustration is presented on

how a ness threshold can be related back to the physical Measurements
specification of the stimulus using the concept of a linear
probability model The Wiener Spectra were measured using a CCD video

We had three objectives for this study. The first was t@wamera with a frame grabber connected to personal
determine the absolute Graininess threshold for uniforneomputer system. An image frame consisted of a 8 bits
gray electrophotographic image samples using graininegpiantization of 512480 pixels (RS-170) corrected for
values estimated via a graininess algorithm. Our secongixel-to-pixel “gain” variation and nonuniform illumination;
objectives was describe the observer response data in terins other words each pixel was linearly corrected. The
of a Linear Probability Model (LPM) that incorporated the camera was set up so the influx geometry was a fiber optic
PIPs in such a way we hoped to link the graininess threshotihg light at 45 degrees from the normal and the reflectance
to image physics. The third was to determine a boundary ifactor calibration was relative to a perfect reflecting
a PIP space of Wiener Spectra and Density that demarcataiffuser.

the region of visible graininess. Once the image frame was captured and corrected the
o . frame was “scanned” by an effective area of 0.0333mm
Graininess Algorithm wide by 1.0mm long. Essentially, a synthetic aperture was

placed in the frame, the average reflectance was taken over
The graininess (GS) algorithm used in this study has bedhe aperture, and the reflectance converted to optical
described by Engeldrum and McN&iliNote that there is an density. This comprised one data point. The aperture was
addenda that has significant corrections to the algorithmmoved one half a slit width and the process repeated. Two
The graininess defined by this algorithm is essentially thelata arrays were constructed, one for the horizontal scan
logarithm of the standard deviation, RMS, of the lightnesglirection and the other for the vertical scan direction. For
fluctuations as seen by the Human Visual System (HVS}he horizontal scan direction a total of about 4,000 data
The algorithm incorporates in a simple manner twopoints were taken and 25 blocks of 158 data points were
important properties of the HVS; the nonlinear transductiomsed to compute the average WS. For the V direction a total
of luminance to the ness - lightness, and, a spatial frequenc§ 31 blocks of 129 data points were used. With these

parameters the relative 95% confidence interval (fraction of
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the computed value) on the Wiener Spectrum varied fromlmost always the same - cool white fluorescent. This and
about +0.3 for the horizontal measurements to about +0.dther factors would be carefully monitored and controlled in
for the vertical WS measurement€omputation of the WS a “proper” psychophysical experiment, but was not an
was carried out to 14 cy/mm and corrected for the dataption in this, or in a lot of product development situations.
collection system MTF. The average density was computed A psychometric experiment to determine the threshold
from the 4,000 data points and removed from the datgraininess value, using a variation on the classical Method
before the WS calculation. of Constant Stimulj was conducted as follows. Each
The sample space in terms of the WS fluctuations andbserver was given the following definition of graininess
average density is shown in Figure 2. In this figure thébefore starting the experiment:
ordinate is the granularity constant, G, which is just the zero
spatial frequency value of the measured°WSom each
calculated WS and average density, the graininess of each
sample was calculated using equation (1). There was no
substantial difference between the horizontal and vertical This rather broad definition of graininess was used
graininess values so the average of the two directions wégcause many of the sample patches had low spatial

"Graininess is the lack of uniform appearance of
the solid areas. High graininess means the patch is
not at all uniform."

taken as representing the graininess of the sample. frequency variations that are often called “mottle”. Perhaps
a better term would have been “uniformityness”.
10t — — Observers were asked to read was the following set of
e instructions:
1o - e ] "I will give you a series of graininess samples.
) ) Would you please place the graininess samples in
o WF o two piles. The first pile is for samples that you feel
5 ] have visible graininess. The second pile will
N - | contain samples that you feel have no visible
* graininess. View the samples at normal viewing
distance. Take your time, there are no right or
T ] wrong answers. We are interested in your opinion."
L At the end of the experiment the observer returned two
B piles to the test conductor. The first pile contained the
Reflection Density samples that have visible graininess and the second pile
) ) . o contained the samples the were judged to have no
Figure 2: G-Density space of graininess stimuli. graininess. If a sample were judged to have visible
graininess a one was added to the count for that sample.
Observers After all the observer data were collected the resulting data

consisted of the proportion of observers that judged each

Thirteen, mostly male, observers performed thesample to have visible graininess.

psychometric experiment. All observers are engineers and )

have various degrees of familiarity with assorted imaging Data Analysis

systems. In other words all observers were experienced with ) ) _

viewing and evaluating the nesses, visual attributes, ofhe data analysis task was to fit the proportion versus
images. This is a small number of observers compared faininess data with a psychometric function [Psychometric
classic psychophysical experiments that often use either = “Mind/measuring’(10).]. A psychometric function is a
large number of observers, 100 or so, or a large number 6#mulative probability function, (CDF) of some probability
replicate observations. A small sample number is noflensity function. Two most popular and widely used in
atypical of industrial experiments, with the consequenceBSychophysics are the Gaussian or normal, and the logistic.
being lack of precision in the estimate of the absolutdhe analysis methods are often called Probit analysis and
threshold. Increasing the number of observers willLogistic or Logit analysis, respectively.

ultimately improve the confidence in the graininess  The general mathematical form of the estimation or
threshold. fitting problem is given by equation (2).

Psychometric Experiment - Method of P =Fa+Bx) @)
Constant Stimuli In equation (2) abov® = the proportion (probability)
of a “yes there is visible graininess” responses to sample
Our prime interest was determining the Graininess thresholgtimuli) j, having a graininess value »f The constantsy
for practical applications; specifically what people wouldandp are parameters that need to be estimated.
see in their office environment. This choice adds additional ~ For the two models considered, the Gaussian or normal,
variation to the results because there was no attempt @nd the logistic, equations(3) and (4), respectively, define
control, for example, the illuminance level when theF(). Forthe normal psychometric function we have,
samples were viewed, although the spectral quality was
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o 2 region from just above the zero proportion to just below the
e 2 d= ®(a +B %) ©) unity proportion, it most important. An approach is to
change the last zero value to 1/(2*number of observers) and

1
P, :F(G+BXJ-)ZE

o ignore all previous zeros, and at the high end replace the
o ) ) first unity proportion with 1-1/(2*number of observers) and
The logistic is formally given by equation(4); ignore all subsequent unity proportions.
(@+Bx;) The third estimation method, which was only
P, = F(a+px)= : € () implemented using the logistic psychometric curve, is called

+e @) Ty gl@r ) maximum-likelihoo®. With maximum-likelihood estima-
. . L tion, the zero and one proportions are not a problem.
Several options are ava|lab[e for estlmatlngqrquﬁ - Once the psychometric curve parameters are deter-
parameters of both psychometric models. The simplest is {Qiined the value of graininess that gives a 0.5 proportion, or
plot the z-values, of + Bx), corresponding to the . apapility, is selected as the graininess threshold. For both
proportions,P.. These values will usually fall on a straight noychometric functions the threshold estimate occurs when
line and simple least-squares fit often suffices. The secong Bx = 0. Since it assumed that the proportions are drawn
option is a non-linear least-squares fit of the proportions t§om 3 hinomial population, exact confidence intervals can
the psychometric curve. _ _ be placed on the 0.5 proportion based on the number of
One practical problem must be dealt with when using,pserverd”. A graininess threshold confidence interval can
the z-value fitting procedure, and that is zero and Onge gptained by reflecting the proportion confidence interval

proportions. Using either equation (3) or (4) will yield z-{hr5ugh each” psychometric curve, using the appropriate
values that are eitheso-for a proportion of zero ore+fora  narameter estimates.

proportion of 1.0. For this application, fitting the transition

TABLE | - Summary of estimated psychometric function parameters, graininess threshold, and graininess threshold
confidence intervals.
Model Estimator Parameter RMS fit Graininess 95% Cl on GS
Values Threshold Threshold

Normal Linear LS o=-0.324 0.0382 0.263 -0.258.,0.785
=1.233

Nonlinear LS o =-0.431 0.0341 0.314 -0.154-0.783
B=1.371

Logistic Linear LS o =-0.549 0.0387 0.26 -0.235.,0.756
B=2.111

Nonlinear LS a =-0.755 0.0343 0.321 -0.124-.0.768
B =2.348

Maximum o =-0.613 0.0405 0.246 -0.174-.0.666
Likelihood B =2.488

Fraction > Zero

Fraction > Zero

02 |- 7 g
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Graininess % % data
XX data ~ linear on z-value fit
~ linear z-value fit nonlinear on P fit
nonlinear P fit ML on P fit

Figure 3: Normal psychometric curve fits; linear on z-values andFigure 4: Logistic psychometric curve fits; linear on z-values,
nonlinear on proportion values. nonlinear on proportion values, and maximum likelihood.
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Threshold Results The first factor on the RHS of (1a) has to do with the
mean value of the reflection density, or reflectance factor, of
Table | summarizes the results of fitting two psychometridhe image, and the second term represents the density
curves using two or three estimation methods. The standafflictuations as weighted (“seen”) by the human visual
deviation of the data points about the fitted curve is alsgystem.
shown in the table. All fits are statistically significant.
Figure 3, the normal psychometric cure, shows two fits  Threshold Density-Wiener Spectra Space
using the linear fit to the transformed values and the
nonlinear fit to the proportions. Figure 4, the logisticFrom our psychometric experiment we knew the absolute
psychometric curve, illustrates the three estimatiorgraininess threshold value, GSthresh, and in combination
methods: transformed, nonlinear and maximum likelihoodwith some reasonable assumptions about the WS, and
It is difficult to say which is the “best” estimation method. equation (1a) we can determine a region in density-WS
However, on an RMS basis the logistic curve tends to fit thepace where the graininess was below threshold.
data slightly better, but either psychometric model is To make some headway on establishing the boundary
satisfactory for this data. we assume that the WS is constant, “flat” with the WS(0) =
Once we determined the graininess threshold, a logicab, the granularity constant having units of Derigity.
scale of graininess was made by assigning zero to thWith this assumption G comes outside the integral in
threshold value. The scale can also be multiplied by aquation(1a) and the term reduces to ¥z log(kG), where k is
suitable value so some graininess value yields soma constant equal to the integral of the square of the VTF.

convenient scale value. This is generally very conservative, because real images
_ N have WS that decrease with spatial frequency and the
Linear Probability Model subsequent weighting by the VTF will make the integral

less than k. We take the graininess threshold, from the
The usual application of a nonlinear probability modelestimates above, to be about 0.3 and solve for the
LPM, is to model dichotomous responses, (0-1 or yes-no) aganularity constant G as a function of optical reflection
some linear combination of factors. It is somewhat similadensity. The derivative of L** with respect to D is scaled so
to a liner regression model except the dependent variable itsequals 1.0 when D = 0.
a dichotomous response. In this application we depart
somewhat from the standard application of the LPM in that
we fit the proportions, which are not dichotomous but use 110°
the formalism as our model. Using the logistic function, or
logit model, we can write the model equatiof{8)

1

q
P =Fa+B) GS)= ; ®)
k=1 —(a+ﬂ; GSy)
l+e =

whereq is the number of linear factors, or variables, in the

LPM. Classical psychophysical threshold curves have only

one physical variable that describes the stimuli; for example

the luminance of a light or the acoustic pressure of a soun e

wave. The specification of the stimuli via a ness is not at all I

common, usually because a Visual Algorithm, VA,

connecting the Physical Image Parameters to the nes:

(graininess in this instance) is not available. In the usua.

situation therefore, the only specification is the physical

value of the stimulus. Figure 5: G-D at graininess threshold. Below curve GS is not
We substituted the components of the VA into theVisible.

psychometric function we estimated above, and we saw that ) o o o

there are two linear components; the two factors, Thl_s _boundary line is shown in figure 5. Belqw _thls_llne

log(lightness of average density) + log(integral of WS xthe graininess was not detectable and above this line it was.

VTF?). This can be made clear if we rewrite the graininesd Nis figure also illustrates that an increase in the physical
algorithm, equation(1), in the form of equation(la). fluctuations are tolerated as the density increases or the

lightness decreases. This graph is the Physical Image
1 Odu=20 1 H u u
=2 %7 SloafvTF S v
GS=7 logH— - 6%+2|09E-[VTF u

Granularity Constant, D"2um"2
@
=

Reflection Density Factor

Parameters trade-off responsible for graininess. For some

(la) imaging systems the Wiener Spectra dependence on
imaging element size is known and thus Graininess can be
cast, ultimately, in terms of Technology Variables

[ T
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Conclusions 4.

1) The absolute graininess threshold has been determined
using a normal and logistic psychometric curve and several
different model parameter estimation methods. The range in
the threshold estimates is about £20% of the mean value.

5.
2) Formulation of the graininess threshold as a Linear
Probability Model illustrates that two Physical Image
Parameters, the mean lightness and the visually weighted
density fluctuations are required to predict the psychometric
experiment. This is essentially a consequence of the.
graininess model.

7.
3) Using the graininess threshold, GSthresh, a Wiener
Spectra scale value-reflection density space can be
constructed the defines a region where the graininess is nét
visible. Generally the results show that an increase in
physical fluctuations with increasing density are allowed.
while keeping the Graininess below threshold.

10.
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